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Some Exact Analytical Solutions of Planetary Entry

W. H. T. Lou*

Aerospace Corporation, El Segundo, Calif.

Approximate analytical solutions of entry into a planetary atmosphere at constant lift-drag
ratio have been presented by Gazley, Chapman, Allen and FEggers, and Loh. Constant lift-
drag ratio entry dictates variable angles of inclination. On the other hand, variable lift-drag
ratio entry has been discussed by Lees, Grant, and Loh. A few approximate analytical solu-
tions of variable lift-drag ratio entry have been given by Loh. exact analytical solutions of
eniry into a planetary atmosphere have not been presented before. It is the purpose of this
paper to present some exact analytical solutions obtained recently. When minor terms of the
exact solutions are neglected, the exact solutions presented here reduce precisely to those
approximate solutions presented previously by Loh for variable lift-drag ratio entry.

Nomenclature

reference area for lift and drag expressions, ft2
dimensional constant in heat transfer equations
drag coefficient

equivalent skin-friction eoefficient Cr’ =

1 IAYAZ Cpi
sJsen (;Xv) P () as

skin-friction eoefficient

lift coefficient,

specific heat at constant pressure

drag, 1b

acceleration due to force of gravity, ft/sec?

convective heat transfer coefficient, ft-Ib/ft%-sec-°R

convective heat transferred per unit area, ft-1b/ft2

constant = 6.8 to 15 X 107% (u/u earth)'? X (Pr/
Preasn) ™2 X [(v — 1)/7]1V¥/[(¥ — 1)/¥]¥* earth
(given by Allen and Eggers?: ¢ and Chapman3)

thermal conductivity

mass of the vehicle, slugs

distance of vehicle measured from center of planet, ft.
When altitude of the vehicle is small in comparison
with planet radius, R may be taken approximately as
Ry; R also stands for range

radius of planet

radius of curvature of flight path (see Fig. 1), ft

convective heat transferred, ft-l1b

distance along flight path, ft

surface area, ft2

time, sec

temperature, °R

velocity, fps

Prandtl number

atmospheric density, slugs/ft?

coefficient of viscosity, lb-sec/ft?

angle of inclination or angle of flight path to local
planet horizontal, positive for descent, deg

surface emissivity

Stefan-Boltzmann constant = 3.7 X 1071 ft-lb/ft2-
sec-°R+*

nose or leading edge radius of body or wing, ft

ratio of specific heats

constant in planetary density-altitude relation o =
pe™BY. Here p; = reference density, slugs/ft3, g =
const, and y = altitude; p, = 0.0027, (1/8) = 23,500
for earth (for other planets, see Ref. 3)
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Subscripts

I = condition at end of power boost or condition at begin-
ning of unpowered glide
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l = local conditions

r = recovery conditions
s = gtagnation conditions
sl = gea level conditions
av = average values

A = initial conditions
max = maximum values

w = wall conditions

I. Introduction

THE fundamental equations of entry are

L = mg cosf — mV?*( cosf/R) — mV*db/ds) (1)
—D = —mg sin@ -+ (m/2)(dV?/ds) 2

which may be combined to give the following equation:

ay? 2 g 2¢ cosf AT
is T @D <ds> + D) <1 gR>
2g sinf = 0 (3)

For constant lift-drag ratio entry, exact analytical solutions
are impossible. However, several first-order approximate
solutions are available. In the case of ballistic entry with-
out lift at large angles of inclination, Gazley,® Allen and
Eggers,® and Chapman? obtained their first-order approxi-
mations by neglecting both the gravity force term and the
centrifugal force term in the fundamental equations (1) and
(2). In the case of gliding entry at small angles of inclina-
tion and positive lift-drag ratio, Allen and Eggers® obtained
their first-order approximations by neglecting both the second
term and the fourth term in the basic equation (3). In the
case of gliding entry at large angles of inclination and nega-
tive lift-drag ratio, Loh obtained his first-order approxima-
tions by neglecting the third term of the basic equation (3).
Because of the terms being neglected in the first-~order theories,
the solutions obtained therein are limited in a relatively
narrow region of entry applications. Only recently, a second-
order solution® and a unified solution of entry mechanics
were developed by Loh. Although these solutions cover
both glide and ballistic entry at either small or large angles
of inclination, they are limited to constant lift-drag ratio
entries. It is the purpose of this paper to present a few exact
solutions for variable lift-drag ratio entries.

Constant lift-drag ratio trajectories were discussed by the
forementioned authors. Constant lift-drag ratio requires
variable angles of inclination (either large or small). As dis-
cussed in the previous papers,® * ¥ Jarge angles of inclination
result in a higher rate of heat transfer but a lower amount
of total heat input to the vehicle, whereas small angles of
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inclination result in & lower rate of heat transfer but a higher
amount of total heat input to the vehicle. Both rate of
heat transfer and amount of total heat input to the vehicle
might raise the vehicle temperature above tolerable limit
during certain phases of planetary atmosphere re-entry.
Since the ecritical portion of atmosphere re-entry usually
occurs either at relatively lower atmosphere or relatively
shorter length of time, variable lift-drag ratio flight, although
difficult, is not impossible. Trajectories under variable lift-
drag ratio may be controlled in such a way that the peak
deceleration, heating, etc., experienced by the vehicle are
held to a tolerable amount within a short length of time or
within a certain phase of lower atmosphere penetration.
Control of vehicle trajectories in such a way may be made
for 1) approximate constant deceleration flight or constant
aerodynamic load factor flight, 2) constant rate of average
heat input flight or constant average radiation equilibrium
temperature flight, 3) constant rate of stagnation point input
flight or constant stagnation region radiation equilibrium
temperature flight, and 4) constant angle of inclination
flight. Two kinds of exact analytical solutions will be dis-
cussed; they are as follows:

1) Exact analytical solutions of practical interest. These
analytical solutions take the form pV» = const or angle of
inclination is constant, where items 1-4 in the foregoing be-
long in this category.

2) Exact analytical solutions of general interest. These
analytical solutions hold drag coefficient constant and express
the angle of inclination as a function of density and an in-
teger, i.e., siné = f[(a/n)p].

In the case of exact analytical solutions of practical interest,
if the appropriate minor terms are disregarded or simplified
to those specified in the approximate solutions,® the present
exact solutions also are reduced precisely to those solutions
given previously.® The exact solutions developed here, such
as the approximate constant deceleration entry, are especially
useful for proper entry into Jupiter, where entry deceleration
is most critical.

II. Analysis

In a nonrotating two-dimensional inertial coordinate sytem
with its origin at the center of the earth or planet and the
gravitational field g during the entry portion assumed as
constant, the equations of motion in the directions normal
and tangential to the trajectory are

L — mg cosf = —mV?( cost/R) — mV2(db/ds) (4)
—D + mg sin = (m/2)(dV?:/ds) = m(dV/dL) %)
From the usual approximate exponential planetary at-
mosphere, T 274
p = poe P (6)
and
B = —(1/p)(do/dy) = Mg/R'T Q)

It is to be noted® here that the molecular weight i, gas
constant R’, and temperature T of the planet’s atmosphere
enter the equation here only in the parameter 8, which rep-
resents the local density gradient in the planetary atmosphere.
Putting

It

L =5CLpV24

D=1Cpr V2 A
using the kinemastic relation,

— sinf = dy/ds

+ This density relationship is based on the assumption of an
isothermal gas in a uniform gravitational field.?
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into Egs. (4) and (5) and rearranging terms, one obtains

d cosé 1 gRo . 1/L
dBy) (EIE) cosh <72 - 1) T2 (D) X
<%4> e (8

d(V2/gRo) (@) (V2/gRy) < 2 > ©
d(By) mB )" sinf B8R

substituting Eq. (6) into (8) and (9) and simplifying, one
obtains

d cosf 1\ cosf g_lﬁ,_ 1 L Cpa
o T <6Ro> P (Vz 1) =3 <D>< M6> (1o
d(V2/gRy) n (%) (V%/gRy) <i> 1
dp mp sind ~ \BRy/ »

Equations (10) and (11) are the exact equations of motion
of entry into a planetary atmosphere. Exact solutions of
practical interest will be presented first, and exact solutions
of general interest will be given in the next section.

(1

A. Exact Analytical Solutions of Practical Interest

1. Entry at constant p V"

Many entries of major interest belong to this category, for
example, 1) constant Reynolds number entry n = 1 (approxi-
mate sense), 2) constant deceleration entry (approximate
sense), 3) constant aerodynamic load factor entry (n = 2),
4) constant rate of heat input entry n = 2 (approximate
sense), and 5) constant equilibrium skin temperature entry
n = 3 (approximate sense). Detailed derivations of these
entries for altitude, 8, (dV/dt), s, R, {, L/D required, will be
given later.

Entry at constant value of pV dictates that

an = p; Vin = const = k1 (12)

Here n and % are constants, and subscript ¢ indicates the
initial condition at the beginning of variable lift-drag entry.
Differentiating Eq. (3), one obtains

dp = —(n/2)k; (dV?*/V*+2) (13)
It is always desirable to derive solutions of all the unknowns
in terms of one independent variable, say V.
a. Allitude y. From Eqgs. (6) and (12), one obtains
y = (1/8) In(peV™/k1) (14)
b. Angle of inclination . Substituting Egs. (12) and
(13) into (11) and simplifying, one obtains
kl(CDA/ mf3)
2/n)Vr + (29/B)V?

c. Deceleration (dV/dt) and mazimum deceleration (dV/
D) max. Substituting Eqs. (12) and (15) into (5), one obtains

(15

sinf =

d_T{ _ l (%) ky + ky(CpA/mpB) (16)
a =" 2\Tm )V T Vet /BT
Maximum deceleration occurs at

(d/dV)(dV/dt) = 0 17)

This gives

(- )] -
() 7+ )]+ () o oo
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and its solution is

AR 29\ _
(n) Vit (6) =
F(n/2) = (/2 — 4l0/2) — 1)}
[(n/2) = 11(8/9)

Equation (19) indicates that maximum deceleration does not
exist for » > 2, which are the cases of major interest here.
The deceleration increases continuously as the velocity de-
creases and approaches an asymptote. (When n = 2, it is
very nearly a constant deceleration entry.)

d. Flight distance olong flight path s. From Eq. (16), one
obtains

(19)

av o dv 1 (%) B k(Cp4/mB)
# ' ds 2\ m )V T I@mve + (2g/B) V2
or
_ 2/ . Qy/Bin/n —2)] .,
%= = Codfmm (Cod/myl VT 20
Equation (20) may be integrated to give
_@/m . m
ST 8= opaim VTV
@g/B)In/(n = DT o ny iy
(CpA/m)k Vs Ve @
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-

= _[Ln—_l_)] (V-1 —

(Cod/m)ks Vi &

(29/8)In/(n — 3)]

(CDA/m)kl (Vz.n—"'i —_—

V=3 (26)

g. Required lLft-drag ratio L/D. Equation (10) may be
rewritten as

(1%) = (?DA_Z/mE l:— sinf <g_z> + (ﬁ) c_o;sf N
(gv_}? - 1)] @7

Differentiating equation (15), one obtains

as\ -
cosd (d—p ) =

(CpA/mB)(2/m)V* £ (2¢/B)[(n — 2)/n](Cod/mB) V2D
@2/m)V»+ (29/8) V2

(28)
Substituting Eqs. (12, 15, and 28) into (27), one obtains

(I:) _ ( 2 ) 1 (= {k(Cod/mB)/[2/M)V" + (29/8)V*]}912 (gl_?_ _ 1) _
D) = \BRs/ (CpA/mB)

(ks/ V)

V2

k1 (CpA/mB)

{[(2/7017" + (29/6)V""2]2 _ 1}1’2 [(4/n)V2" + (4g/B8)[(n — 2)/n]V2‘"“):I (29)

e. Range R. One obtains from the geometrical relation-
ship

dR = cosfds = (1 — sin?4)12ds (22)
Substituting Eq. (15) into (22), one obtains
2
R= —1—
(CpA/m)k, X

k(CpA/m)

I {1 "[(%)Vn ¥ (2g/ﬁ)V"‘2:|2}1/2 [@) awrt
(8)G2s) o] oo

When n = 2, Eq. (23) reduces to

1
= (Cod/me

Vi ([V2 4 20/B)F — [k(Cod/m) ]2} 2 [ . (?_g>
J 7 + @/8)] SRRV ]

R

(24)
which yields the solution

£t e 3) - (ST
(7 2) - (27722 ()

When n > 2, Eq. (23) easily can be integrated graphically
f. Time of flight t. Using Eq. (20), one obtains

@/m)V= + (2¢/8) V2

It should be noticed that when the minor term (2¢/8) of
Eq. (11) and consequently all terms containing the (2¢/8)
term in all the solutions obtained in this paper are neglected,
the exact solutions (15, 16, 21, 23, 25, 26, and 29) all are
reduced to the corresponding approximate solutions pub-
lished previously.® It is to be noticed here that the error
introduced [for example, Eq. (15)] by the approximate
solution published previously® is in the order of

approximate solution 14 I:(Qg/ ﬁ)]
exact solution - 1 &

This shows that the error is negligibly small (less than 19
when V is in the neighborhood of orbital speed or greater)
when V is large, but the error is increased when V is reduced
during lower atmosphere penetration. At least six entries
belong to the category pVr = ki

a. Constant deceleration entry (approzimate sense). Equa-
tion (5) reads

dV/dt = —(Cpd/m)kpV? + g sing
= —(CpA/m)5pV? (5a)

One sees immediately that, for a constant deceleration
entry at small angle of inclination 8, pV? is a constant.
Therefore, when n = 2, the solutions obtained here become
the solutions for entry at nearly constant deceleration.

b. Constant aerodynamic load factor entry. The aero-
dynamic load factor is (£)pV% One sees immediately that,
for a constant aerodynamic load factor entry, n = 2.

¢. Constant time rate of heat input entry. The time rate
of average heat input given in Refs. 3 and 4 is

dH.v/dt = (1/8)(d@Q/dt) = 1C#'pV?3

One sees immediately that, for a constant time rate of average
heat input entry, n = 3.
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The time rate of stagnation heat inputi given in Refs. 3
and 4 is

dH/dt = K'(p/a)V?V?

One sees immediately that, for a constant time rate of stag-
nation heat input entry, n = 6. This is because p/2V? =
const and (p/2V?)2 = pV® = const.

d. Constant radiation equilibrium skin temperature entry.
This entry is the same as the constant time rate of heat input
entry. The reason is that, for a given surface temperature,
rate of heat radiated out is equal to ek’T.*% Using this quan-
tity and the rate of heat input expression given in Refs.
3-5, a velocity-density or velocity-altitude relationship
can be determined such that the heat input to the body is
exactly equal to the heat radiated out. However, it is
necessary to exert 1ift, aerodynamie, or even reaction when
necessary to traverse such trajectory along the specified path,
as is absolutely required for all the variable lift-drag ratio
flights presented in this paper.

e. Other entry solutions. Other entry solutions that are de-
sired to maintain a pV» = const also may be obtained from
the solutions presented here. For example, for a constant
Reynold number?® flight (when the viscosity u is treated as
a constant), n = 1.
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()= () e

L Cod zg - ind Viz
- < m > "(E) o {er

(&)() + ()~

0o |

ngl (Cpd/mp S;I(lﬁ)')” (p» ~ Pi"):’} +gsing (33)
¢. Distance along flight path s. -From p = poe ~#¥ and geo-
metrical relationship (dy/ds) = — sinf, one obtains
dp = —pBdy = Bp sinf ds (34)
Therefore
(=)= f 3 jiflep =3 slinﬁ ln<i) (35)
d. Range R.

R = Jf cosfds = cosf(s — s))

= (1/8) cotd In(p/p:) (36)
e. Time of flight t.
;= ds _ f» dp
T J VT Jei BsingpV
1 I3 ¢(CDA/mp 5ind) (0/2)
T Bsing Ja —CpA 8) o © ] 37
p 3 (V2= (CDA/mSE sind)oi] L (29/8) In(p/p:) + (20/8) Y, WCpA/mB sind)~/n(nh)](p» — pm)Y?
n=1

Equation (37) may be integrated graphically.

f. Required lift-drag ratio L/D. When 6 = const, Eqs. (27) and (32) give

gRoe(C'DA/mﬂ siné) p

5~ (am) @iom ()
D~ \BR:/ (Cod/mB) \p

2. Entry at constant angle of inclination
Entry at constant angle of inclination dictates that
0 = 6; = const = ks (30)

In this case, various solutions of unknowns may be expressed
most easily in terms of the independent variable p.

a. Velocity V. When angle 0 is a constant, Eq. (11)
readily may be solved. The solution is

VE = _262 o~ (CDA/mB sing)p l:fe(cm/m,s sim)p 9P C] (31)
o

Since
ee =1+ (an/nl)

1+ (CpA/m B sinf)» p»

e(CDA/mﬂ sinf)p —
n!

Equation (31) may be integrated readily

. » V2 2g
— p,—(CpA 9 [ A
V2 = ¢— (CDA/mg sind)p {e_(CDA/mﬂ sing) ps (B) X

L3 29\ & [(CpA/mB sing)»(pm — pi»)
In (P—:) + (B >1§1[ n(nt) :I} (32)

b. Deceleration dV/dt. From Eq. (5), one obtains

{ Viscosity u was assumed inversely proportional to square
root of temperature 7'.

Vize(C’DA/mB sind) pi + (29/6){

—1{ (39)

n(p/p) + 3 [(Cod/mB sind)"/n(n)](om — o)

‘f

It should be noticed that, when the minor terms containing
(29/8) are neglected, Eqs. (32, 33, and 35-38) all are reduced
to the corresponding approximate solutions published pre-
viously.®

Note that Eq. (38) indicates that, when 6 is large, (L/D)
becomes small, and, therefore, for either ballistic entry (where
L/D = 0) or small (L/D) entry at large angles of inclination,
the trajectory is very close to a constant angle of inclination
entry trajectory.

g. Special case where (L/D) = 0. When (L/D) = 0 and
the trajectory becomes ballistic entry at constant angles of
inclination, the present solutions, when minor terms are
neglected, are reduced precisely to those solutions published
previously for ballistic entry at large and constant angles of
inclination.t~3 5

B. Exact Analytical Solutions of General Interest$

The following cases of entry at constant Cp and variable
(L/D) will be discussed:

sinf = (a/n)p

sinf = aplnp

sinf = (a/n)p!t™

1/sinf = [1/(a/n)p] + (1/ap Inp)

1/sind = [1/(a/n)p] + (1/ap Inp) + [1/(a/n)p*~"]
The basic equations (10) and (11) become

dx x 2b
— 4o —-— = (39)
dp sinfd P

§ Practical applications of those solutions eurrently are not
visualized.
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d cos@ cosf (/1 a
2 e(3o)-

)

Here

a = (CpA/mB) = const
b = (1/BRy) = const (41)

x = (V?*/gRy) = nondimensional variable

1. Entry at sinf = (a/n)p

Here 7 is a constant that could be any integer or fraction of
an integer, — © <n < + o,
a. Angle of inclination 8. The specified entry condition is

sinf = (a/n)p (42)

b. Altitude density p and altitude y. Substituting Eq.
(42) into (39), one obtains

(dz/dp) + n(x/p) = 2b/p 43)
The solution of Eq. (43) is
z = (2b/n) + (pi/p)[w: — (2b/n)] (44)
or
_ z; — (2b/n) |t~
P I::c — (2b/n) ] (49)

1 Pi)l:l'i - (2b/’n):|”"}
= — =1 N — 4
V=78 n{(ﬂo z — (2b/m) “5)
c. Deceleration dV/dt and maximum deceleration (dV/

df)max. Substituting Egs. (42) and (44) into (5), one ob-
tains

() - () [2)+ (>
(- 2Ter (G o

Maximum deceleration occurs at
(d/dp)(dV/dt) = 0
This gives
(p_*) _ [ (1 = w) & — (2b/n)) ]un )
pi (2/Ro)(a/n)(m/CpA) — (2b/n)

Here p* is the altitude density at which (dV/dt)max occurs.

|Substituting Eq. (48) into (47), one obtains the maximum
deceleration in terms of x;,(m/Cpd), and n,(2b/n),(a/n),
(2/R,), and p;.

'd. Distance along flight path s. Substituting Eq. (42)
into (34), one obtains

_f°_d _(n\(L _ 1
R Bola/n)p (aﬁ?)(m P> (49)

e. Range R.

— sin20)12,
o = costis = (1) [ IO o)

Substituting Eq. (42) into (50), one obtains

LI\ = (@/medd {1 — (/e
k= (6 )[ [(a/m)p:] (a/me] T

sin~t <% pi> — sin™! (% p)] (581)

ATAA JOURNAL

f. Time of flight t.

ds pf n\ dp
=L@ @

Substituting Eq. (44) into (52), one obtains

n 1
b= (@')[(gmw] X

» dP
S, @ =
g. Required (I/D). From Eq. (40), one obtains

LY (2 (1 — sin?@)v2
(5) = ()=
<l - 1) — sin0<ﬁ>] (54)
T dp

Differentiating Eq. (42) with respect to p, one obtains
cosb(df/dp) = (a/n) : (55)

Substituting Eqgs. (42, 44, and 55) into (54), one obtains
(L/D) in terms of p only

L\ _ (2\f, L= (a/myp]
(5)“<a>{b ; X
1 2
[(Zb/n) + (pi/p)[z: — (2b/m)] 1] - (%) X

1
”<m)} (56)

a. Angle of inclination 8. The angle of inclination 8 vs
altitude density p again is given as a preselected entry path.
This entry path again has to be fulfilled by the required
variable (L/D) to be determined later in order to satisfy
Eq. (40):

IS

2. Entry at sinf = ap lnp

sinf = ap Inp (57

b. Altitude density p. Substituting Eq. (57) into (39),
one obtains

(dz/d Inp) + (x/ Inp) = 2b (58)
Equation (58) readily may be solved

x = e¢—JS(dlnp/Inp) (2b f e/ (dInp/Inp) 4 Inp + €)  (59)
= blnp + (Inp:/ Inp)(xz; — b Inp;) (60)

¢. Deceleration (dV/dt) and mazimum deceleration (dV/
A max-

(d—V> = — <g—RO><Cﬂ4> P l:b Inp + 13& (@ — blnpi):l+
dt 2 m Inp

gap lnp (61)
The maximum deceleration occurs at
(d/dp)(dV/dt) = O

The density p* at which the maximum deceleration occurs is

- ()
<5L2@’><9;—;il) Inp:(z: — b Inp) (m%;)[l - (ﬁ)] 62)
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Let
lga — (gRo/2)(CpA/m)b] = ny (63)
(gRo/2)(CpA/m) Inp,(z: — b1np;) = ny (64)
One obtains
1 1
ni(l + lnp) = n, [h’l_p - (ln—p)?:| (65)
n.(Ilnp)® + n(lnp)? — ne(lnp) + ne = 0 (66)

The solution of Eq. (66) may be obtained readily by the
ordinary method of solving algebraic equations of the third

degree.
d. Required (L/D). Differentiating Fq. (57) with respect
to p, one obtains

c0s0(d6/dp) = alp(dInp/dp) + Inp] = a(1 + Inp) (67)
Substituting Eqs. (57, 60, and 67) into (54), one obtains

LYy (2 [1 — (ap Inp)?]H*
<5> B <a>{b p X

1
[b Inp + (Inp;/ Inp)(w; — blnpy) l:l B

. __idmy
(a o Inp) ([1 — (ap lnp)2]1/2>} (©

3. Eniry at sin
6 = (a/n)p~"

a. Angle of inclination 0. The angle of inclination vs alti-
tude density p again is preselected as

sinf = (a/n)p*~" (69)

b. Altitude denstty p. Substituting Eq. (69) into (40),
one obtains

(dx/dp) _I_ (nx/pl—") = 2b/p (70)
z = e=S /s <2b f oS /et map Loy C)
p
- (L) o ame v ] o
let
=] n p
=14 3 @% (72)
p=1 P

Substituting Eq. (72) into (71) and performing integration,
one obtains

_ 1 3 2\ & e = (pin)? ,pin}
T [<2b) o <m> + <n> p; oy e

(73)

¢. Deceleration (dV/dt). Substituting Eqgs. (69) and (73)
into (3), one obtains

av R, Cprd
il <%><7> P [2bln<ﬁ> +
26 & (o) = (o) e ay .,
. sz:l - + se ] + g <n> ot (74)

d. Required (L/D). Differentiating Eq. (69) with respect
to p, one obtains

cosf(d8/dp) = (a/n)(1 — n)p— (75)
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SURFACE

Fig. 1 Two-dimensional flight

Substituting Eqs. (69), (70), and (75) into (54), one obtains

() - ()=t

(a/n)?p (1 — n)
= {(a/mpw]z}w] (76)

4. Entry at (I1/sin8) = [1/(a/n)p]l 4+ (I/ap Inp)

It should be noticed that this case is one whose reciprocal
is equal to the sum of the reciprocal of the function described
in cases 1 and 2here.

a. Angles of inclination 8. The angle of inclination vs
altitude density p again is preselected as

1/ sinf = [1/(a/n)p] + (1/ap Inp) (77

b. Altitude density p. Substituting Eq. (77) into (39), one
obtains

pldx/dp) + [n + (1/lnp)lz = 2b (78)
The solution of Eq. (78) is

exp U - <n+ i)dlnp]

T =
1
{2bf exp X [f(n—i—ln—p) dll’lp:l dlnp + C}
W b .
= <2bf o7 Inpd Inp + C) (79)
Let
lnp" = pr = €* (80)

Therefore, the integral becomes
[ oroding = =, [ zeiz =
n .

(7%2>(Zez — ) = n%e’(Z - 1) (8D
Substituting Eq. (81) into (79) and determining the con-
stant by initial conditions, one obtains
= (1/p" Inp){(2b/n®) [(n Inp — 1)p* —
(nlnp; — 1) p] 4 @ipm Inps} (82
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¢. Deceleration (dV/dt). Substituting Egs. (77) and (82)
into (3), one obtains

av Ro\/CpA
G == (%) o rorion +
() e e () ]}«

1
g [{1/[<a/n> — ol ¥ (ap 1n,,>]] (83)

d. Required (L/D). Differentiating Fq. (77) with respect
to p and after simplification, one obtains

@ - — Qin? 1/2<@>_a(1+lnp)
cosd (dp) = (1 — sin26) i) = niop + 1 (84)

Substituting Eqs. (77, 82, and 84) into (54), one obtains
the complete expression of required (L/D) in terms of alti-
tude density p only.

5. Entry at (I1/ sing) = [1/(a/n)c] + (I/ap Inp) +
[1/(a/n)p*~"]

It should be noticed that this case is one whose reciprocal
is equal to the sum of the reciprocals of entry described in
cases 1,2 and 3.

a. Angle of inclination 8. The angle of inclination vs
altitude density p again is preselected as

1 1 1 1
sind = (a/myp t @y

ap Inp (85)

b. Altitude denstty p.
pldz/dp) + [n + (1/ lnp) + nprla = 2b (86)
The solution of Eq. (86) is

,;L = exp[— f <n+ hlip +’I’Lp”> dlnp:l X
{21; f exp[f<n+ l—i—p +np"> dlnp] dInp + C} (87)

1 n
@ = [W][(Zb) f e*(Inp)er"d Inp + C] (88)

Let
Inp~ = Z on = € (89)

Therefore the integral becomes

f p(lnp)e"d Inp = (%)[(Z — et +

o« 1 2 +p
Z (rs) o] o

p=1

Substituting Eq. (90) into (88) and determining constant C
by initial conditions, one obtains

1 2
T [W :I{(ﬁ)“" Inp — Dp» —

1

2
- n(l+p) — ,.n(l+p)
1+ p> [P Pi ]+

(n Inp; — Do) + Zm: <
p=1

xi[pi"(lnpi)e‘””]} (91)

¢. Deceleration (dV/dt). Substituting Eqs. (85) and (91)
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into (3), one obtains the deceleration (dV/df) in terms of
altitude density p only.

d. Required (/D). Differentiating Eq. (85) with respect
to p and after simplification, one obtains

ﬁ — — a1n2\1/2 <d_0> .
cosf <dp) = (1 — ¢in%) »

aln + (1/Inp) + (1/Inp)? — n(n — 1)p]
fn + (1/Inp) + npn]?

(92)

Substituting Eqs. (85, 91, and 92) into (54), one obtains
the complete expression of required (L/D) in terms of alti-
tude density p only.

III. Conclusions

In general, variable lift-drag ratios may be obtained in the
following three ways:

1) Varying the angle of attack of a lifting vehicle.

2) Varying the drag coefficient at a constant lift coefficient
(deploying a variable area drag device while the lifting sur-
face maintains a fixed lift coefficient).

3) Varying the lift coefficient at a constant drag coefficient,
such as using a bedy, the drag coefficient of which remaing
essentially constant when its lift coefficient varies (bodies
with high parasite drag coefficients which dominate induced
drag coefficients), or such as simultaneously changing the
angle of attack and deploying a variable-area drag device
(drag chute). Theinterrelation of drag coefficient and lift-drag
ratio'l at hypersonic speeds has been discussed by Chapman.?
However, for the present paper, it was of interest only at the
case where drag coefficient # is a constant and lift-drag
ratio is a variable that is achieved either by aerodynamic
forces or even reaction forces.  The interrelation of drag co-
efficient and lift-drag ratio as investigated by Chapman was
neglected in this paper.
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